"); //-->
一、证书的整体结构:证书内容、签名算法、签名结果。
用ASN.1语法描述如下:
Certificate::=SEQUENCE{ tbsCertificate TBSCertificate, signatureAlgorithm AlgorithmIdentifier, signatureValue BIT STRING }
其中,签名算法为CA对tbsCertificate进行签名所使用的算法;类型为AlgorithmIdentifier,其ASN.1语法描述如下:
AlgorithmIdentifier::=SEQUENCE{ algorithm OBJECT IDENTIFIER, parameters ANY DEFINED BY algorithm OPTIONAL }
其中,algorithm给出了算法的OID;可选的parameters给出算法的参数。
需要注意,algorithm同时说明了杂凑算法和数字签名算法,常见的有:(1)MD5wihRSAEncryption, MD5 Hash函数和RSA签名算法配合使用,OID为1.2.840.113549.1.1.4。(2)SHA1withRSAEncryption, SHA-1 Hash函数和RSA签名算法配合使用,OID为1.2.840.113549.1.1.5。
签名结果是CA对tbsCertificate进行签名的结果,类型为BIT STRING。
证书内容是需要被CA签名的信息,ASN.1语法描述如下:
TBSCertificate::=SEQUENCE{ version [0] EXPLICIT Version DEFAULT v1, serialNumber CertificateSerialNumber, signature AlgorithmIdentifier, issuer Name, validity Validity, subject Name, subjectPublicKeyInfo SubjectPublicKeyInfo, issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL, subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL, extensions [3] EXPLICIT Extensions OPTIONAL }
其中,issuerUniqueID和subjectUniqueID只能在版本2或者3中出现;extensions只能在版本3中出现。
下面我们逐一说明TBSCertificate中的每一个字段。
1>版本号
版本(version)为整数格式。到目前为止,证书格式的版本只有v1、v2、v3,分别用整数0、1、2表示。
其类型Version的ASN.1描述如下:
Version::=INTEGER {v1(0),v2(1),v3(2)}
目前最常用的版本是v3。
2>序列号
证书序列号(serialNumber)为整数格式。
其类型CertificateSerialNumber的ASN.1描述如下:
CertificateSerialNumber::=INTEGER
证书序列号用来在某一个CA范围内唯一地标识一张证书。由此,“签发者”和“证书序列号”配合起来就能唯一地标识一张数字证书。在很多PKI的通信协议中使用的就是这种方式。
RFC 3280标准要求证书序列号必须是正整数,且长度不应该大于20字节。
3>签名算法
签名算法(signature)给出了CA签发证书时所使用的数字签名算法,它的类型与signatureAlgorithm的类型相同,都为AlgorithmIdentifier,它们的值必须一致,否则该证书无效。
4>签发者和主体
证书的签发者(issuer)和证书主体(subject)分别标识了签发证书的CA实体和证书持有者实体,两者类型均为Name。ASN.1描述如下:
Name::=CHOICE{ RDNSequence } RDNSequence::=SEQUENCE OF RelativeDistinguishedName RelativeDistinguishedName::=SET OF AttributeTypeAndValue AttributeTypeAndValue::=SEQUENCE{ type AttributeType, value AttributeValue } AttributeType::=OBJECT IDENTIFIER AttributeValue::=ANY DEFINED BY AttributeType
证书的签发者和证书主体用X.509 DN表示,DN是由RDN构成的序列。RDN用“属性类型=属性值”的形式表示。常用的属性类型名称以及简写如下:
属性类型名称 | 含义 | 简写 |
Common Name | 通用名称 | CN |
Organizational Unit name | 机构单元名称 | OU |
Organization name | 机构名 | O |
Locality | 地理位置 | L |
State or province name | 州/省名 | S |
Country | 国名 | C |
5>有效期
证书有效期(validity)给出证书的有效使用期,包含起、止两个时间值。时间值可以使用UTCTime或者GeneralizedTime的形式表示。ASN.1描述如下:
Validity::=SEQUENCE{ notBefore Time, notAfter Time } Time::=CHOICE{ utcTime UTCTime, generalTime GeneralizedTime }
6>主体公钥信息
主体公钥信息(subjectPublicKeyInfo)给出了证书所绑定的加密算法和公钥。其ASN.1描述如下:
SubjectPublicKeyInfo::=SEQUENCE{ algorithm AlgorithmIdentifier, subjectPublicKey BIT STRING }
其中,algorithm表示被绑定的、证书主体持有的公钥密码算法;subjectPublicKey是具体的公钥数据,内容和格式依算法不同而异。对于RSA算法,它包含公钥参数e和n。
7>签发者唯一标识符和主体唯一标识符
签发者唯一标识符(issuerUniqueID)和主体唯一标识符(subjectUniqueID)给出了证书签发者和证书主体的唯一标识符。UniqueIdentifier类型的ASN.1描述如下:
UniqueIdentifier::=BIT STRING
二、证书编码
针对ASN.1的语法,编码可以采用“TLV”方式,即依次对数据的类型(type)、长度(length)、值(value)编码,这样就可以完整地表示一个特定类型的数据。“TLV”方式的编码有多种,下面介绍DER这种编码方式。都是big-endian字节序。
1.简单类型的编码
1>BOOLEAN:01
布尔类型,两种取值:TRUE(0xFF)、FALSE(0x00)。
编码为:
T L V TRUE 01 01 FF FALSE 01 01 00
2>INTEGER:02
整数类型。两种情况:
第一种,数据长度不大于0x7F,称为“短形式”,length占1字节,直接把长度赋给length。举例:0x123456的DER编码为:
T L V02 03 12 34 56
第二种,数据长度大于0x7F,称为“长形式”,把数据长度L表示为字节码,计算其长度n,然后把n与0x80进行“位或”运算的结果赋给length的第一个字节。举例:0x1234...34(长0100字节),即n=2,编码为:
T L V02 82 01 00 12 34 ... 34
此外,对于整数,还有正负的问题。规定value的最高位表示符号---0(+) 1(-) 负数用补码表示。
1)对于正数,如最高位为1,则向左扩展00。
2)对于负数,如其补码的最高位为0,则向左扩展FF。
3>BIT STRING:03
比特串的长度可能不是8的倍数,而DER编码以字节为单位。故而,如果需要,则在比特串的最后填若干位“0”,使其长度达到8的倍数;在最前面增加1字节,写明填充的位数。特别注意:value部分的第一字节,即表示填充位数的那个字节,也要计入数据的总长度。如果不需要填充,则第一字节也需要用00来表示填充位数。举例:1011010010编码为:
T L V03 03 06 B4 80
4>OCTET STRING:04
字节码串。举例:AB CD EF 01 23的编码为:
T L V04 05 AB CD EF 01 23
5>NULL:05
编码是固定的,value部分为空,一共两字节:
T L05 00
6>OBJECT IDENTIFIER:06
对象标识符(OID),是一个用“.”隔开的非负整数组成的序列。下面说下OID的编码设计:设OID=V1.V2.V3.V4.V5....Vn,则DER编码的value部分规则如下:(1)计算40*V1+V2作为第一字节;(2)将Vi(i>=3)表示为128进制,每一个128进制位作为一个字节,再将除最后一个字节外的所有字节的最高位置1;(3)依次排列,就得到了value部分。举例:OID=1.2.840.11359.1.1的编码如下:
说明:Vi的最后一个字节不对最高位置1,系统以此来识别这里是这个字段的最后一字节。
7>PrintableString:13
表示任意长度的ASCII字符串。举例:“Hello, world”的编码为:
T L V13 0C 48 65 6C 6C 6F 2C 20 77 6F 72 6C 64
8>UTCTime:17
表示时间,可以用GMT格林威治时间(结尾标“Z”)来表示,或者是用本地时间和相对于GMT的偏移量来表示。
UTCTime的格式如下多种:
YYMMDDhhmmZ
YYMMDDhhmm+hh'mm'
YYMMDDhhmm-hh'mm'
YYMMDDhhmmssZ
YYMMDDhhmmss+hh'mm'
YYMMDDhhmmss-hh'mm'
其中,
YY:年的最后2位
MM:月,01-12
DD:日,01-31
hh:小时,00-23
mm:分钟,00-59
ss:秒,00-59
Z/+/-:Z表示GMT时间,+/-表示本地时间与GMT时间的差距
hh’:与GMT的差
mm’:与GMT的差
举例:北京时间2008年8月8日晚8时表示成UTCTime为:080808120000Z 或 080808200000-0800 其编码为:
T L V17 0D 30 38 30 38 30 38 31 32 30 30 30 30 5A 或 T L V17 11 30 38 30 38 30 38 32 30 30 30 30 30 2D 30 38 30 30
9>GeneralizedTime:18
与UTCTime类似,差别只在于用4位数字表示“年”,以及“秒”可精确到千分位。举例:北京时间2008年8月8日晚8时1分2.345秒表示成GeneralizedTime为:20080808120102.345Z 或 20080808200102.345-0800 其编码为:
T L V18 13 32 30 30 38 30 38 30 38 31 32 30 31 30 32 2E 33 34 35 5A 或 T L V18 17 32 30 30 38 30 38 30 38 32 30 30 31 30 32 2E 33 34 35 2D 30 38 30 30
2.构造类型数据的编码
1>序列构造类型:30
SEQUENCE与SEQUENCE OF的type相同,都是30。value部分为序列内所有项目的编码的依次排列。length为这些项目编码的总长度。举例:一天中几次温度测量的结果:temperatureInADay SEQUENCE(7) OF INTEGER::={21,15,5,-2,5,10,5}, 其DER编码为:
T L V30 15 02 01 15 02 01 0F 02 01 05 02 01 FE 02 01 05 02 01 0A 02 01 05
构造类型的定义中,常常包含CHOICE、ANY、OPTIONAL、DEFAULT等关键字,其编码规则如下:
(1)CHOICE
多选一,按照实际选中的类型编码。举例:
Time::=CHOICE{ utcTime UTCTime, generalizedTime GeneralizedTime }
若实际用到的类型是UTCTime,则数据用UTCTime的编码规则编码。
(2)ANY
类型依赖于另一个域的值,则按照实际类型编码。举例:
AlgorithmIdentifier::=SEQUENCE{ algorithm OBJECT IDENTIFIER, parameters ANY DEFINED BY algorithm OPTIONAL }
若algorithm的值表示RSA,则parameters按RSA算法的参数类型编码;若algorithm的值表示Diffie-Hellman算法,则parameters按Diffie-Hellman算法的参数类型编码。
(3)OPTIONAL
所标记的字段在实际中可能存在,也可能不存在。如果有值,则编码;如果无值,则直接跳过。举例:
AlgorithmIdentifier::=SEQUENCE{ algorithm OBJECT IDENTIFIER, parameters ANY DEFINED BY algorithm OPTIONAL }
实际中,如果没有参数parameters,则相当于
AlgorithmIdentifier::=SEQUENCE{ algorithm OBJECT IDENTIFIER }
(4)DEFAULT
如果所标记的字段在实际中正好等于缺省值,则可以编码也可以不编码,相当于是OPTIONAL;如果不等于缺省值,则应该如实编码。举例:
Certificate::=SEQUENCE{ version Version DEFAULT 0 ...... }
若version的值恰好等于0(缺省值),则可以不编码;否则,必须按其类型编码。
2>集合构造类型:31
SET和SET OF的type都是31,value部分包括集合内所有项目的编码,length为其总长度。需要注意的是,集合构造类型中的各字段是并列的,逻辑上不分先后,但为了编码的唯一性,在DER编码中,编码的排列是有一定顺序的。SET按标签的顺序排列。举例:
Name::=SET{ surname [0] PrintableString, mid-name [1] PrintableString, first-name [2] PrintableString }
编码时则按照surname,mid-name,first-name的顺序。
SET OF按字典升序排列,即将各项目的DER结果看做字节码从小到大排列。举例:一天中几次温度测量的结果:temperatureInADay SET(7) OF INTEGER::={21,15,5,-2,5,10,5}, 其DER编码为:
T L V30 15 02 01 05 02 01 05 02 01 05 02 01 0A 02 01 0F 02 01 15 02 01 FE
由于排序需要一定的时间和空间代价,故而实际情况中,应避免使用集合构造类型。
3.标签
仅仅以上的编码规则是不够的,会有些出现歧义的情况。比如:有相邻的字段属于相同的数据类型。type相同,则根据编码的排列顺序来区分他们。一旦其中有字段是可选的,解码时就不能再仅仅根据排列顺序来判断下一个是哪个字段了,产生歧义。故而,引入了标签,目的是把相同的type标签为不同的type,以便区分。
标签分为隐式标签和显式标签两种。分别如下:
隐式标签:
举例:
Contact::=SEQUENCE{ name PrintableString, sex BOOLEAN, title [0] IMPLICIT PrintableString OPTIONAL, locality [1] IMPLICIT PrintableString OPTIONAL, telephone [2] IMPLICIT PrintableString OPTIONAL, fax [3] IMPLICIT PrintableString OPTIONAL }
DER编码时,对于加了标签的项目,按如下规则编码:
对于简单类型,type=80+tag序号;对于构造类型,type=A0+tag序号。length和value不变。
例如,上例中如果项目fax被赋值为“86-10-12345678”,则编码为
T L V83 0E 38 36 2D 31 30 2D 31 32 33 34 35 36 37 38
显式标签:
举例:(隐式标签的例子)
Record::=SEQUENCE{ ...... time [1] IMPLICIT Time OPTIONAL, ...... } Time::=CHOICE{ utcTime UTCTime, generalizedTime GeneralizedTime }
假设time被赋值为UTCTime类型的值080808120000Z,而由于隐式标签的type编码覆盖了表示这一类型的type编码,导致编码时无法判断time究竟是哪种类型,造成混乱。于是这里需要使用显式标签。运用显式标签,上例描述为:
Record::=SEQUENCE{ ...... time [1] EXPLICIT Time OPTIONAL, ...... } Time::=CHOICE{ utcTime UTCTime, generalizedTime GeneralizedTime }
编码规则如下:
T L V A0+Tag序号 原TLV格式编码的总长度 原TLV格式编码
上例中time=080808120000Z的编码为:
T L V A1 0F 17 0D 30 38 30 38 30 38 31 32 30 30 30 30 5A
事实上,显式标签就是在原编码外再封装一层。
三、证书解析 C程序
X.509证书的编码及解析:程序解析以及winhex模板解析 - jiu~ - 博客园 (cnblogs.com)
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。