新闻  |   论坛  |   博客  |   在线研讨会
LINUX 使用tcgetattr与tcsetattr函数控制终端
电子禅石 | 2020-03-01 11:19:42    阅读:1428   发布文章

为了便于通过程序来获得和修改终端参数,Linux还提供了tcgetattr函数和tcsetattr函数。tcgetattr用于获取终端的相关参数,而tcsetattr函数用于设置终端参数。这两个函数的具体信息如表6.2所示。

https://blog.csdn.net/liuqz2009/article/details/51967763

表6.2 tcgetattr函数和tcsetattr函数


头文件


函数形式

int tcgetattr(int fd, struct termios *termios_p);


int tcsetattr(int fd, int optional_actions, const struct termios *termios_p);

返回值

成功

失败

是否设置errno

0

−1


说明:tcgetattr函数用于获取与终端相关的参数。参数fd为终端的文件描述符,返回的结果保存在termios结构体中,该结构体一般包括如下的成员:


tcflag_t c_iflag;
tcflag_t c_oflag;
tcflag_t c_cflag;
tcflag_t c_lflag;
cc_t     c_cc[NCCS];



其具体意义如下。

 
c_iflag:输入模式标志,控制终端输入方式,具体参数如表6.3所示。

表6.3 c_iflag参数表

    

    

IGNBRK

忽略BREAK键输入

BRKINT

如果设置了IGNBRK,BREAK键的输入将被忽略,如果设置了BRKINT ,将产生SIGINT中断

IGNPAR

忽略奇偶校验错误

PARMRK

标识奇偶校验错误

INPCK

允许输入奇偶校验

ISTRIP

去除字符的第8个比特

INLCR

将输入的NL(换行)转换成CR(回车)

IGNCR

忽略输入的回车

ICRNL

将输入的回车转化成换行(如果IGNCR未设置的情况下)

IUCLC

将输入的大写字符转换成小写字符(非POSIX)

IXON

允许输入时对XON/XOFF流进行控制

IXANY

输入任何字符将重启停止的输出

IXOFF

允许输入时对XON/XOFF流进行控制

IMAXBEL

当输入队列满的时候开始响铃,Linux在使用该参数而是认为该参数总是已经设置

c_oflag:输出模式标志,控制终端输出方式,具体参数如表6.4所示。

表6.4 c_oflag参数

    

    

OPOST

处理后输出

OLCUC

将输入的小写字符转换成大写字符(非POSIX)

ONLCR

将输入的NL(换行)转换成CR(回车)及NL(换行)

OCRNL

将输入的CR(回车)转换成NL(换行)

ONOCR

第一行不输出回车符

ONLRET

不输出回车符

OFILL

发送填充字符以延迟终端输出

OFDEL

以ASCII码的DEL作为填充字符,如果未设置该参数,填充字符将是NUL(‘\0’)(非POSIX)

NLDLY

换行输出延时,可以取NL0(不延迟)或NL1(延迟0.1s)

CRDLY

回车延迟,取值范围为:CR0、CR1、CR2和 CR3

TABDLY

水平制表符输出延迟,取值范围为:TAB0、TAB1、TAB2和TAB3

BSDLY

空格输出延迟,可以取BS0或BS1

VTDLY

垂直制表符输出延迟,可以取VT0或VT1

FFDLY

换页延迟,可以取FF0或FF1

c_cflag:控制模式标志,指定终端硬件控制信息,具体参数如表6.5所示。


LINUX 使用tcgetattr函数与tcsetattr函数控制终端二






tcsetattr函数用于设置终端的相关参数。参数fd为打开的终端文件描述符,参数optional_actions用于控制修改起作用的时间,而结构体termios_p中保存了要修改的参数。
optional_actions可以取如下的值。
 
TCSANOW:不等数据传输完毕就立即改变属性。
TCSADRAIN:等待所有数据传输结束才改变属性。
TCSAFLUSH:清空输入输出缓冲区才改变属性。

错误信息:
EBADF:非法的文件描述符。
EINTR:tcsetattr函数调用被信号中断。
EINVAL:参数optional_actions使用了非法值,或参数termios中使用了非法值。
ENCTTY:非终端的文件描述符。

实例演练:
程序p6.2.c通过修改终端控制字符,将终端输入结束符由“Ctrl+D”,修改成了“Ctrl+G”。首先,程序调用tcgetattr函数获得标准 输入的termios信息,将termios结构体中的c_cc[VEOF]控制字符的修改成0x07(即Ctrl+G);然后,使用tcsetattr 函数将修改后的termios参数设置到终端中。具体代码如下所示:

//p6.2.c 修改终端控制字符示例
#include
#include
#include
#include
int main(void){
//term用于存储获得的终端参数信息
struct termios term;
int err;
//获得标准输入的终端参数,将获得的信息保存在term变量中
if(tcgetattr(STDIN_FILENO,&term)==-1){
perror("Cannot get standard input description");
return 1;
}
//修改获得的终端信息的结束控制字符
term.c_cc[VEOF]=(cc_t)0x07;
//使用tcsetattr函数将修改后的终端参数设置到标准输入中
//err用于保存函数调用后的结果
err=tcsetattr(STDIN_FILENO,TCSAFLUSH,&term);
//如果err为-1或是出现EINTR错误(函数执行被信号中断),
//给出相关出错信息
if(err==-1 && err==EINTR){
perror("Failed to change EOF character");
return 1;
}
return 0;
}


使用gcc编译p6.2.c程序,得到名为p6.2的可执行程序。在执行p6.2程序前,按“Ctrl+D”可以使终端结束。执行p6.2程序后,按“Ctrl+D”失去了作用,而输入“Ctrl+G”实现了原来“Ctrl+D”的功能

转自:http://blog.chinaunix.net/uid-10747583-id-97303.html

======================================================================================================================


串口操作需要的头文件

#include /*标准输入输出定义*/
#include /*标准函数库定义*/
#include /*Unix 标准函数定义*/
#include#include#include /*文件控制定义*/
#include /*PPSIX 终端控制定义*/
#include /*错误号定义*/



 

1.打开串口

在前面已经提到linux下的串口访问是以设备文件形式进行的,所以打开串口也即是打开文件的操作。函数原型可以如下所示:


int open(“DE_name”,int open_Status)


参数说明:

1)DE_name:要打开的设备文件名

比如要打开串口1,即为/dev/ttyS0

2)open_Status:文件打开方式,可采用下面的文件打开模式:

  O_RDONLY:以只读方式打开文件

  O_WRONLY:以只写方式打开文件

O_RDWR:以读写方式打开文件

O_APPEND:写入数据时添加到文件末尾

O_CREATE:如果文件不存在则产生该文件,使用该标志需要设置访问权限位mode_t

O_EXCL:指定该标志,并且指定了O_CREATE标志,如果打开的文件存在则会产生一个错误

O_TRUNC:如果文件存在并且成功以写或者只写方式打开,则清除文件所有内容,使得文件长度变为0

O_NOCTTY:如果打开的是一个终端设备,这个程序不会成为对应这个端口的控制终端,如果没有该标志,任何一个输入,例如键盘中止信号等,都将影响进程。

O_NONBLOCK:该标志与早期使用的O_NDELAY标志作用差不多。程序不关心DCD信号线的状态,如果指定该标志,进程将一直在休眠状态,直到DCD信号线为0。

函数返回值:

成功返回文件描述符,如果失败返回-1

例如:

Linux 下串口文件是位于 /dev 下的。串口一 为 /dev/ttyS0,串口二 为 /dev/ttyS1。打开串口是通过使用标准的文件打开函数操作:

int fd;/*以读写方式打开串口*/fd = open( "/dev/ttyS0", O_RDWR);if (fd==-1){/* 不能打开串口一*/perror(" 提示错误!");}



2.设置串口

最基本的设置串口包括波特率设置,效验位和停止位设置。串口的设置主要是设置

 struct termios 结构体的各成员值。

struct termio{ unsigned short c_iflag; /* 输入模式标志 */unsigned short c_oflag; /* 输出模式标志 */unsigned short c_cflag; /* 控制模式标志*/unsigned short c_lflag; /* local mode flags */unsigned char c_line; /* line discipline */unsigned char c_cc[NCC]; /* control characters */};



设置这个结构体很复杂,我这里就只说说常见的一些设置:

2.1 波特率设置

波特率的设置定义在,其包含在头文件里。

常用的波特率常数如下:

B0-------à0                     B1800-------à1800

B50-----à50                    B2400------à2400

B75-----à75                    B4800------à4800

B110----à110                 B9600------à9600

B134----à134.5              B19200-----à19200

B200----à200                 B38400------à38400

B300----à300                 B57600------à57600

B600----à600                 B76800------à76800

B1200---à1200              B115200-----à115200

假定程序中想要设置通讯的波特率,使用cfsetispeed( )和cfsetospeed( )函数来操作,获取波特率信息是通过cfgetispeed()和cfgetospeed()函数来完成的。

比如可以这样来指定串口通讯的波特率:

#include     //头文件定义...............struct termios opt;           /*定义指向termios 结构类型的指针opt*//***************以下设置通讯波特率****************/cfsetispeed(&opt,B9600 ); /*指定输入波特率,9600bps*/cfsetospeed(&opt,B9600);/*指定输出波特率,9600bps*//************************************************/...................



一般来说,输入、输出的波特率应该是一致的。

下面是另一个修改波特率的代码:

struct termios Opt;tcgetattr(fd, &Opt);cfsetispeed(&Opt,B19200); /*设置为19200Bps*/cfsetospeed(&Opt,B19200);tcsetattr(fd,TCANOW,&Opt);



设置波特率的例子函数:

/***@brief 设置串口通信速率*@param fd 类型 int 打开串口的文件句柄*@param speed 类型 int 串口速度*@return void*/int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300,B38400, B19200, B9600, B4800, B2400, B1200, B300, };int name_arr[] = {38400, 19200, 9600, 4800, 2400, 1200, 300, 38400,19200, 9600, 4800, 2400, 1200, 300, };void set_speed(int fd, int speed){int i;int status;struct termios Opt;tcgetattr(fd, &Opt);for ( i= 0; i < sizeof(speed_arr) / sizeof(int); i++) {if (speed == name_arr[i]) {tcflush(fd, TCIOFLUSH);cfsetispeed(&Opt, speed_arr[i]);cfsetospeed(&Opt, speed_arr[i]);status = tcsetattr(fd1, TCSANOW, &Opt);if (status != 0) {perror("tcsetattr fd1");return;}tcflush(fd,TCIOFLUSH);}}}



2.2 设置效验的函数:

/***@brief 设置串口数据位,停止位和效验位*@param fd 类型 int 打开的串口文件句柄*@param databits 类型 int 数据位 取值 为 7 或者8*@param stopbits 类型 int 停止位 取值为 1 或者2*@param parity 类型 int 效验类型 取值为N,E,O,,S*/int set_Parity(int fd,int databits,int stopbits,int parity){struct termios options;if ( tcgetattr( fd,&options) != 0) {perror("SetupSerial 1");return(FALSE);}options.c_cflag &= ~CSIZE;switch (databits) /*设置数据位数*/{case 7:options.c_cflag |= CS7;break;case 8:options.c_cflag |= CS8;break;default:fprintf(stderr,"Unsupported data sizen"); return (FALSE);}switch (parity){case 'n':case 'N':options.c_cflag &= ~PARENB; /* Clear parity enable */options.c_iflag &= ~INPCK; /* Enable parity checking */break;case 'o':case 'O':options.c_cflag |= (PARODD | PARENB); /* 设置为奇效验*/options.c_iflag |= INPCK; /* Disnable parity checking */break;case 'e':case 'E':options.c_cflag |= PARENB; /* Enable parity */options.c_cflag &= ~PARODD; /* 转换为偶效验*/options.c_iflag |= INPCK; /* Disnable parity checking */break;case 'S':case 's': /*as no parity*/options.c_cflag &= ~PARENB;options.c_cflag &= ~CSTOPB;break;default:fprintf(stderr,"Unsupported parityn");return (FALSE);}



2.3 设置停止位

switch (stopbits){case 1:options.c_cflag &= ~CSTOPB;break;case 2:options.c_cflag |= CSTOPB;break;default:fprintf(stderr,"Unsupported stop bitsn");return (FALSE);}/* Set input parity option */if (parity != 'n')options.c_iflag |= INPCK;tcflush(fd,TCIFLUSH);options.c_cc[VTIME] = 150; /* 设置超时15 seconds*/options.c_cc[VMIN] = 0; /* Update the options and do it NOW */if (tcsetattr(fd,TCSANOW,&options) != 0){perror("SetupSerial 3");return (FALSE);}return (TRUE);}



 

    在上述代码中,有两句话特别重要:

options.c_cc[VTIME] = 0; /* 设置超时0 seconds*/  

options.c_cc[VMIN] = 13; /* define the minimum bytes data to be readed*/

这两句话决定了对串口读取的函数read()的一些功能。我将着重介绍一下他们对read()函数的影响。

对串口操作的结构体是

Struct{tcflag_t   c_iflag;    /*输入模式标记*/tcflag_t   c_oflag;   /*输出模式标记*/tcflag_t   c_cflag;   /*控制模式标记*/tcflag_t   c_lflag;    /*本地模式标记*/cc_t        c_line;     /*线路规程*/cc_t        c_cc[NCCS];  /*控制符号*/};



其中cc_t, c_line只有在一些特殊的系统程序(比如,设置通过tty设备来通信的网络协议)中才会用。在数组c_cc中有两个下标(VTIMEVMIN)对应的元素不是控制符,并且只是在原始模式下有效。只有在原始模式下,他们决定了read()函数在什么时候返回。在标准模式下,除非设置了O_NONBLOCK选项,否则只有当遇到文件结束符或各行的字符都已经编辑完毕后才返回。

控制符VTIMEVMIN之间有着复杂的关系。VTIME定义要求等待的零到几百毫秒的时间量(通常是一个8位的unsigned char变量,取值不能大于cc_t)           VMIN定义了要求等待的最小字节数(不是要求读的字节数——read()的第三个参数才是指定要求读的最大字节数),这个字节数可能是0

l) 如果VTIME0VMIN定义了要求等待读取的最小字节数。函数read()只有在读取了VMIN个字节的数据或者收到一个信号的时候才返回。

2) 如果VMIN0VTIME定义了即使没有数据可以读取,read()函数返回前也要等待几百毫秒的时间量。这时,read()函数不需要像其通常情况那样要遇到一个文件结束标志才返回0

3) 如果VTIMEVMIN都不取0VTIME定义的是当接收到第一个字节的数据后开始计算等待的时间量。如果当调用read函数时可以得到数据,计时器马上开始计时。如果当调用read函数时还没有任何数据可读,则等接收到第一个字节的数据后,计时器开始计时。函数read可能会在读取到VMIN个字节的数据后返回,也可能在计时完毕后返回,这主要取决于哪个条件首先实现。不过函数至少会读取到一个字节的数据,因为计时器是在读取到第一个数据时开始计时的。

4) 如果VTIMEVMIN都取0,即使读取不到任何数据,函数read也会立即返回。同时,返回值0表示read函数不需要等待文件结束标志就返回了。

这就是这两个变量对read函数的影响。

 

2.4 串口属性配置

在程序中,很容易配置串口的属性,这些属性定义在结构体struct termios中。为在程序中使用该结构体,需要包含文件,该头文件定义了结构体struct termios。该结构体定义如下:

#define NCCS 19

struct termios {

             tcflag_t c_iflag;               /* 输入参数 */

             tcflag_t c_oflag;               /* 输出参数 */

             tcflag_t c_cflag;               /* 控制参数*/

             tcflag_t c_ispeed;              /* 输入波特率 */

tcflag_t c_ospeed;              /* 输出波特率 */

             cc_t c_line;                   /* 线控制 */

             cc_t c_cc[NCCS];              /* 控制字符*/

};

其中成员c_line在POSIX(Portable Operating System Interface for UNIX)系统中不使用。对于支持POSIX终端接口的系统中,对于端口属性的设置和获取要用到两个重要的函数是:

1).int tcsetattr(int fd,int opt_DE,*ptr

该函数用来设置终端控制属性,其参数说明如下:

fd:待操作的文件描述符

opt_DE:选项值,有三个选项以供选择:

TCSANOW:  不等数据传输完毕就立即改变属性

TCSADRAIN:等待所有数据传输结束才改变属性

TCSAFLUSH:清空输入输出缓冲区才改变属性

*ptr:指向termios结构的指针

函数返回值:成功返回0,失败返回-1。

2).int tcgetattr(int fd,*ptr

该函数用来获取终端控制属性,它把串口的默认设置赋给了termios数据数据结构,其参数说明如下:

fd:待操作的文件描述符

*ptr:指向termios结构的指针

函数返回值:成功返回0,失败返回-1。

2.5 注意的问题:

如果不是开发终端之类的,只是串口传输数据,而不需要串口来处理,那么使用原始模式(Raw Mode)方式来通讯,设置方式如下:

options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG); /*Input*/

options.c_oflag &= ~OPOST; /*Output*/

3.读写串口 3.1 串口读操作(接收端)

open函数打开设备文件,函数返回一个文件描述符(file descriptors,fd),通过文件描述符来访问文件。读串口操作是通过read函数来完成的。函数原型如下:

int read(int fd, *buffer,length);

参数说明:

1).int fd:文件描述符

2).*buffer:数据缓冲区

3).length:要读取的字节数

函数返回值:

读操作成功读取返回读取的字节数,失败则返回-1。

3.2 串口写操作(发送端)

写串口操作是通过write函数来完成的。函数原型如下:

write(int fd, *buffer,length);

参数说明:

1).fd:文件描述符

2).*buffer:存储写入数据的数据缓冲区

3).length:写入缓冲去的数据字节数

函数返回值:

成功返回写入数据的字节数,该值通常等于length,如果写入失败返回-1。

例如:向终端设备发送初始化命令

设置好串口之后,读写串口就很容易了,把串口当作文件读写就是。

·发送数据

char buffer[1024];

int Length;int nByte;

nByte = write(fd, buffer ,Length)

 

4.关闭串口

关闭串口就是关闭文件。

close(fd);

5.例子

下面是一个简单的读取串口数据的例子,使用了上面定义的一些函数和头文件

/**********************************************************************代码说明:使用串口二测试的,发送的数据是字符,但是没有发送字符串结束符号,所以接收到后,后面加上了结束符号。我测试使用的是单片机发送数据到第二个串口,测试通过。**********************************************************************/#define FALSE -1#define TRUE 0/*********************************************************************/int OpenDev(char *Dev){int fd = open( Dev, O_RDWR );//| O_NOCTTY | O_NDELAYif (-1 == fd){perror("Can't Open Serial Port");return -1;}elsereturn fd;}int main(int argc, char **argv){int fd;int nread;char buff[512];char *dev = "/dev/ttyS1"; //串口二fd = OpenDev(dev);set_speed(fd,19200);if (set_Parity(fd,8,1,'N') == FALSE) {printf("Set Parity Errorn");exit (0);}while (1) //循环读取数据{while((nread = read(fd, buff, 512))>0){printf("nLen %dn",nread);buff[nread+1] = '';printf( "n%s", buff);}}//close(fd);// exit (0);


*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。

参与讨论
登录后参与讨论
属于自己的技术积累分享,成为嵌入式系统研发高手。
推荐文章
最近访客